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Abstract

This paper presents a 3-D integral equation analysis of guided
surface waves and leaky waves on a dielectric layer structure
with 2-D implanted periodic dielectric blocks. The electric
fields within the implanted periodic blocks are unknowns in
the moment method. The method involves a full dyadic
Green's function. The guided surface waves and leaky waves
are identified as eigenvalues of a deterministic equation
resulting from a moment method procedure. The analysis
may deal with a variety of irregular and anisotropic implants.
The analysis may also deal with layered or grounded
structures through the modification of the Green’s function.
The presented approach is also suitable for the analysis of
photonic band gap materials.

I. Introduction

Due to the recent advancement of material technology, there
are growing research activities in the electromagnetic
applications of advanced (artificial) materials. Many
technologies will benefit if the electric or optical properties of
materials can be properly controlled.  Photonic crystals
where wave propagation is prohibited within a certain band
are examples of such applications [1]. In addition, thin-film
structures containing periodic material implants have been of
considerable interest in integrated optics [2], frequency
selective surfaces [3], and absorbing materials [4]. In the
past, there is considerable work on material layered structures
with material gratings, mostly for 2-D structures with
gratings in one direction. References [5-8] are some of the
additional examples. Layer structures with 2-D gratings had
also been investigated, but mostly for scattering applications,
such as for absorbers [4] and frequency selective surfaces [3].
There is little work on guided waves and leaky waves on
layered structures with 2-D planar gratings.

This paper deals with the field theoretical analysis of guided
and leaky waves on a dielectric slab with planar periodic
material blocks. The geometry is shown in Figure 1. A
rigorous 3-D integral equation moment method is developed,
where the full dyadic Green’s function for the structure is
needed. Although the implants shown in Figure 1 are
rectangular blocks, the developed analysis is general enough

0-7803-3246-6/96/$5.00 © IEEE

723

for most irregular (not curved) implants. For 2-D material
gratings, the guided or leaky wave characteristics are
different in different directions. Results of mode diagrams in
different propagation directions will be presented. Photonic
band structures for bounded modes are also discussed.
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Figure 1. A guided and leaky wave structure with two dimensional
material grating within a dielectric slab.

I1. 3D Integral Equation Analysis

The geometry is modeled as infinite planar arrays of material
blocks within a supporting layer.  Since the structure is
periodic, Floguet's theorem is applied to simglify the problem
to the modeling of electromagnetic waves within an infinitely
long cylinder shown in Figure 2. The boundary conditions at
the surface of the unit cell are determined on the Floquet's
theorem. The cross section of the rectangular cylinder
extends within ~¢/2<x<a/2 and -b/2<y<h/2. A
material block is at the center of the cell with length L (along
the % axis), width W (along the § axis), and the thickness T
(along the Z axis). The supporting layer with thickness h
extends from -#/2 to h/2. A is the distance measured from
the bottom of the block to the layer interface (see Figure 2).
The region in the cylinder above and below the supporting
layer is air regions. €] and € are the dielectric constants of
the dielectric layer and the implants, respectively. The
electric fields within the material block at a unit cell treated as
displacement current sources are the unknowns in the
moment method analysis. An integral equation is established
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to express electric fields in terms of displacement currents.
Since all the three components of fields are involved, it is
necessary to deal with a full dyadic Green's function for a
dielectric slab. The integral equation is expressed as

E=[f] [6] Tedv (1)

The volume integral is over only the region of implanted
anisotropic material blocks centered at the origin of the
Cartesian coordinates. [G] is the dyadic Green’s function for

a dielectric layer and is in the following form:
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Figure 2. A unit cell of infinite planar arrays of material blocks
within a dielectric layer.

with
1 v w 5  —jkxx=x)jky(y—y"
Guv=E 2 ZGuveJx }yyy,(?,)
Mm=—copp=—00
2mn 2nw

ky ==——+Py and ky =——+P,,. wuorviseitherx, y,
a b
orz B, and By are the propagation constants in the x and y

directions, respectively. {;uv is the spectral Green’s
function component and is a function of spectral variables &,
and ky, z, z', and the material parameters. The spectral
Green’s function for a dielectric layer is found in a similar
way as that for a microstrip antenna structure. The

displacement currents within the implants are in the following
form:

Jo = joeg(es —€1)E @
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After the integral equation and the associate Green's function
are found, a finite-element moment-method procedure is
applied numerically to determine the electric fields within the
material implants. This is done first by discretizing the
material implants into many small cells within which the fields
are assumed (constants), but with unknown coefficients.

My My M,

E= 3} Y Amgmymy f (me,my.mz) (S)
mx=1 my=lmz=1

where within the cell (mx,my,mz), f(mx,my,mz) =1 and
f(mx,my,mz)=0, elsewhere. There are Mx,My, and
M, divisions in each side of the material blocks (the x, y,
and z directions respectively). If the field representation in

Eq. (5) 1is used in the integral equations and the resulting
fields are evaluated at the cell at indices My, My and my,,

respectively for the x, y, and z directions, we convert the
integral equations into a set of linear equations (a matrix
equation):

[e) o0
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j m=—copp=—o0

(6)

where each i or j represents a particular cell and field
component and [g]ij o 18 @ 3 by 3 matrix resulting from two

volume integrations of Eq. (3) over the cells associated with
i and j. If both indices i and j run from 1 to
P=3xXMyXMyXMg,, Eq. (6) represents a matrix

equation. Nontrivial solution for the fields requires the
matrix determinant to be zero, which results a characteristic
equation. The eigenvalues (propagation constants) f are

obtained from the roots of this equation through a bisection
method.

1. Results and Discussions

One of the features of the moment method is that the shape of
the implants is flexible. In the process of solving the matrix
equations for rectangular blocks, we may, at our wish, set
the displacement currents at some of the cells to zero. This
procedure corresponds to physically cutting off pieces of the
implants. All the numerical results in this work are produced
from PCs. Extended validity check of the present analysis is
performed. First, the implanted blocks are set as large as the
unit cell, so that the analytic results for the guided wave
modes and the plane wave reflection are available. Excellent
agreement is found. Another test case is for a plane wave
scattering from a slab with one dimensional grating. In this
analysis, if the implanted blocks are connected to one of the
cell boundary, the geometry reduces from two dimensional to
one dimensional gratings. The computed results are compared
against those with a finite element method [8]. It is noted



that in this analysis, for higher the frequencies or larger the
dimensions, more expansion cells are needed to obtain
reasonable convergence. In general, the cell size at about a
tenth of wave length provides good convergence. It is also
found that the number of cells in the vertical (z) direction is
more crucial.  In this paper, 441 Floquet modes with
My =3,My =3 M; =17 arcused to produce the results.

Guided waves and leaky waves on a diclectric layered
structure with 1-D material gratings have been studied
extensively and their characteristics are well understood. For
2-D material gratings, it is of interest to investigate the mode
characteristics on various directions and the photonic band
structures. Examples of dispersion diagrams for guided and
leaky wave modes of a dielectric layer with 2-D rectangular
material gratings are shown in Figures 3 and 4, respectively
for propagation in the x and %+ y directions (see Figure 2).
For waves in the % direction, the mode characteristics are
similar to the case for 1-D grating. There exist photonic band
gaps for modes near the Brillouin zone boundary. At low
frequencies, the two fundamental modes are similar to a TE
(upper) and a TM (lower) modes of a dielectric slab. When
the frequencies are such that Bragg condition is satisfied, the
bounded modes turn to improper complex wave modes (band
gap zone). As frequency increases further, bounded surface
wave modes (in slow wave zone) turn into proper leaky wave
modes (in the fast wave zone). The frequency where the first
leaky wave mode turns on and the frequency band where only
one leaky wave mode exist are of practical interest. These
are determined by the profile of the gratings.

For wave propagation in the X+ ¥ (450) direction, the
mode diagram is more complicate and is shown in Figure 4.
As compared to waves in the x direction, the bounded wave
modes may exist at higher frequencies and the first leaky
wave mode also turns on at a higher frequency. It is very
interesting to observe from Figure 4 that the some of the
bounded and leaky wave modes are almost degenerate
modes.

The photonic band structures for the bounded (slow wave)
modes of a dielectric layer with rectangular holes drilled
through are shown in Figure 5. In the diagram, between T
and X points, the modes are propagating in the X direction,
while between M and T points, the modes are propagating in
the £+ ¥ direction. The shadow region in the inset of
Figure 5 is the imreducible Brillouin zone.  The dotted
envelope in Figure 5 corresponds to the plot for B = kg, the
boundary between bounded (slow wave) modes and leaky
wave (fast wave) modes. In between X and M points, the
bounded waves satisfy the Bragg condition in the X
direction, and there exist many improper complex modes.
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Figure 3. Dispersion diagram for modes in a dielectric slab with 2D
material gratings. Propagation in the £ direction. a=b=8 mm,
h=4mm, W=L=64mm, T=32mm, A=0.8 mrm, €; =40, and

€y = 90
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Figure 4. Dispersion diagram for modes in a dielectric slab with 2D
material gratings. Propagation in the £+ § direction,
Parameters are the same as those 1n Figure 3.
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Figure 5. Photonic band structures for the bounded modes of a
dielectric slab with 2D material gratings. a=b=8 mm, 4=4mm,
W=L=6mm, T=4 mm, A=0, ¢, =4, and g,=1.

(', X, M are symmetric points in Brillouin zone shown in the inset).
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